

15MAT11

First Semester B.E. Degree Examination, July/August 2021 Engineering Mathematics - I

Time: 3 hrs .
Max. Marks: 80

Note: Answer any FIVE full questions.

1 a. Find the $\mathrm{n}^{\text {th }}$ derivative of $\cos \mathrm{x} \cos 3 \mathrm{x} \cos 5 \mathrm{x}$.
(06 Marks)
b. Obtain the Pedal equation of the curve $r=2(1+\cos \theta)$.
(05 Marks)
c. Find the radius of curvature of the curve $x=a \log (\sec t+\tan t), y=a \sec t$.
(05 Marks)
2 a. If $y=a \cos (\log x)+b \sin (\log x)$, show that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$.
(06 Marks)
b. Show that the curves $\mathrm{r}^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \cos \mathrm{n} \theta$ and $\mathrm{r}^{\mathrm{n}}=\mathrm{b}^{\mathrm{n}} \sin \mathrm{n} \theta$ intersect each other Orthogonally.
(05 Marks)
c. Show that for the curve $r(1-\cos \theta)=2 a, \rho^{2}$ varies as r^{3}.
(05 Marks)
3 a. Obtain the Maclaurin's expansion of $\log \left(1+e^{x}\right)$ as far as the fourth degree terms.
(06 Marks)
b. Evaluate : $\operatorname{LLt}_{x \rightarrow 0}\left[\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right]$.
(05 Marks)
c. If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
(05 Marks)

4 a. Evaluate : $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}}$.
(06 Marks)
b. If $u=\log \left(\frac{x^{4}+y^{4}}{x+y}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3$.
(05 Marks)
c. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z, w=2 z^{2}-x y$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$.
(05 Marks)

5 a. A particle moves along the curve, $x=1-t^{3}, y=1+t^{2}$ and $z=2 t-5$.
i) Determine its velocity and acceleration.
ii) Find the components of velocity and acceleration at $t=1$ in the direction $2 i+j+2 k$.
(06 Marks)
b. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at $(2,-1,2)$.
c. Prove that Curl $($ grade $\phi)=\overrightarrow{0}$.
(05 Marks)
(05 Marks)
6 a. Find the directional derivatives of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ along $2 i-j-2 k$. (06 Marks)
b. Show that $\vec{F}=2 x y z^{2} i+\left(x^{2} z^{2}+z \cos (y z)\right) j+\left(2 x^{2} y z+y \cos (y z)\right) k$ is a potential field and hence find its scalar potential.
(05 Marks)
c. Prove that $\operatorname{div}(\operatorname{Curl} \overrightarrow{\mathrm{A}})=0$.
(05 Marks)

7 a. Obtain the reduction formula for $\int \sin ^{n} x d x$.
15MAT11
b. Show that the family of parabolas $y^{2}=4 a(x+a)$ is selfOrthogonal.
c. Solve $y e^{x y} d x+\left(x e^{x y}+2 y\right) d y=0$.
(06 Marks)
(05 Marks)
(05 Marks)
8 a. Obtain the reduction formula for $\int \sin ^{m} x \cos ^{n} x d x$.
(06 Marks)
b. Solve $\frac{d y}{d x}+\frac{y}{x}=y^{2} x$.
(05 Marks)
c. A body in air at $25^{\circ} \mathrm{C}$ cools from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ in 1 minute. Find the temperature of the body at the end of 3 minutes.
(05 Marks)
9 a. Find the rank of the matrix by elementary row transformation.

$$
\mathrm{A}=\left[\begin{array}{cccc}
2 & -1 & -3 & -1 \\
1 & 2 & 3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

(06 Marks)
b. Apply Gauss - Jordan method to solve the system of equations: $2 \mathrm{x}+5 \mathrm{y}+7 \mathrm{z}=52$;
$2 x+y-z=0 ; x+y+z=9$.
(05 Marks)
c. Show that the transformation: $\mathrm{y}_{1}=2 \mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}, \mathrm{y}_{2}=-4 \mathrm{x}_{1}+5 \mathrm{x}_{2}+3 \mathrm{x}_{3}, \mathrm{y}_{3}=\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}$ is regular and find the inverse transformation.
(05 Marks)
10 a. Solve $20 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=17 ; \quad 3 \mathrm{x}+20 \mathrm{y}-\mathrm{z}=-18 ; 2 \mathrm{x}-3 \mathrm{y}+20 \mathrm{z}=25$ by Gauss - Seidel method.
(06 Marks)
b. Find the Eigen values and Eigen vectors of the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
(05 Marks)
c. Reduce the quadratic form $2 \mathrm{x}_{1}^{2}+2 \mathrm{x}_{2}^{2}+2 \mathrm{x}_{3}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{3}$ to Canonical form.
(05 Marks)

